
Fractional quantum Hall effect on the 2-sphere: a quasispin analysis

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 4863

(http://iopscience.iop.org/0305-4470/23/21/026)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 09:24

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 23 (1990) 4863-4875. Printed in the UK 

Fractional quantum Hall effect on the 2-sphere: 
a quasispin analysis 

Roger Sollie?$ and KBre OlaussentO 
t Gruppe for Teoretisk Fysikk, Universitetet i Trondheim, Norges Tekniske Hogskole, 
N-7034 Trondheim-NTH, Norway11 
$ Department of Physics, Temple University, Philadelphia, PA 19122, USA? 
8 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 
02139, USA 

Received 3 May 1990 

Abstract. We study a class of models for the fractional quantum Hall effect, where the 
system is mapped onto the surface of a sphere around a strong magnetic monopole. When 
the magnetic charge of the monopole is half-integer (in units of h i e ) ,  there exists an SU(2) 
quasispin group operating on the Fock space of these models. This group commutes with 
the group of rotations on the sphere, but not with the particle number operator N. This 
fact may be utilized to easily construct states of definite angular momentum at high particle 
numbers from states of the same angular momentum at lower particle numbers. Using the 
Wigner-Eckart theorem the matrix elements of the Hamiltonian between these states can 
also be constructed. For a large class of pair interactions this leads to a computational 
method of finding exact eigenstates and eigenvalues of the Hamiltonian. 

1. Introduction 

A convenient way to construct theoretical models for the fractional quantum Hall 
effect (FQHE) [l] is to replace the (say) Hall bar geometry of a heterojunction by the 
surface of a sphere, with the homogeneous magnetic field being created by a magnetic 
monopole at the centre of the sphere. This was first done by Haldane [2]. The advantage 
of this replacement is that it leads to the most familiar (and thus simplest) geometric 
symmetry group for the problem, i.e. the ordinary rotation group+. The usual Born-von 
Karman periodic boundary conditions (i.e. mapping the system onto a 2-torus) is of 
no particular advantage in this case, because the two translation operators do not 
commute with each other when a magnetic field is present, and because the 2-torus 
has a more complicated topology than the surface of a sphere. 

From the point of view of numerical investigations of such FQHE models, it is of 
great interest to utilize the symmetries of the problem as much as possible, since this 
will block diagonalize the Hamiltonian, and thereby reduce the size of the matrices 
which must be treated numerically [3]. This leads to large savings in computer time 
and storage [4], which in turn increases the size of the systems which can be investigated 
numerically. For the FQHE the necessity of extending the computation to quite high 

I/ Permanent address. 
ll Present address: Department of Physics, Florida State University, Tallahassee, FL 32306, USA. 
+ Actually its SU(2) covering group, when the magnetic charge q of the monopole is half-integer (measured 
in units of h i e ) .  
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particle numbers is immediate. As functions of the filling factor v, no macroscopic 
cusps in the ground state energy per particle E ( V )  have yet been found [5]. We can 
estimate the size of the particle number N which is necessary to see a structure in 
E ( V )  on a scale AV. According to Dirac's quantization condition, the charge q of a 
magnetic monopole (measured in units of f i l e )  is either integer or half-integer. The 
first Landau level can host 2q + 1 particles, so the filling factor is v = N/(2q  + 1). Thus, 
since N and 2q can only be varied in integer steps, a resolution in the filling factor 
of A V  can only be achieved for particle numbers N 3 v 2 / A v ,  which may be rather large. 

However, it is in general a rather non-trivial problem to explicitly construct a basis 
of states which are eigenstates of the total angular momentum operator, and the matrix 
elements of the Hamiltonian between such states. In a previous paper [6] we made a 
case study of how this can be done with little computational work when N = 4 and 
J = 0, up to fairly large values of q. The purpose of the present paper is to utilize these 
results to generate a set of J = 0 states at higher particle numbers N, and the correspond- 
ing matrix elements of the Hamiltonian between these states. For a large class of 
interaction potentials, exact eigenstates of the Hamiltonian can be formed from the 
set constructed (but these will not necessarily include the ground state). In general the 
method can be viewed as a convenient method for generating a basis of trial wavefunc- 
tion of the appropriate symmetry class. 

The method is based on the Wigner-Eckart theorem in connection with an SU(2) 
group which commutes with the angular momentum operators J, but not with the 
number operator N. This group is known in atomic theory as the quasispin group [7]. 
It exists whenever q is half-integer. 

The rest of this paper is organized as follows. In section 2 we introduce the class 
of models to be studied, briefly review some basic aspects of this class, and identify 
the su(2) quasispin Lie algebra. In section 3 we classify the operators of the model 
according to their transformation properties under quasispin, and show how the 
standard Hamiltonians can be split into quasispin scalar, vector and tensor parts (where 
the vector part is essentially proportional to N ) .  In section 4 we construct the states 
which diagonalize the quasispin Casimir operator I*  = I( I + l) ,  for the cases of I = 
I,,, = (2q  + 1)/4, I = I,,, - 2, and the matrix elements of the Hamiltonian between 
these states. This sets the stage for the numerical analysis. 

2. The two-fermion operators and the quasispin algebra 

The class of models we want to study, and our basic notation, are the same as in [6], 
where the FQHE system was mapped onto the surface of a 2-sphere and projected onto 
the fully spin-polarized states of the lowest Landau level. The (rotational invariant) 
pair-interaction V could be expressed in terms of the two-fermion operators 

or alternatively in terms of the set 
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Here (: :) is a Wigner 3j-symbol, and the operators defined are spin-L spherical 
tensors. The ALM are non-zero only when 2q+  L is an odd integer. The creation and 
annihilation operators a: ,  a, are related to the fermion field (projected onto the lowest 
Landau level) by 

9 4 
*(cl)= a,Y;;q'(sz) *+(cl) = 1 ( - )m-%2: ,  Ybfl,,(l2) (3) 

m = - q  m = - q  

where Yj;"(cl) are the monopole harmonics of Wu and Yang [8]. The pair-interaction 
can be expressed in the alternative forms 

where aL, P L  are coefficients which depend on the interaction potential between pairs 
of particles?. We have the relations 

W L =  C RLJVJ v L = C  RLJWJ 
J 

P L  = R L J f f J  a L  = C RLJPJ 
J J 

where RU is a real, symmetric and orthogonal matrix, 

{: : 51 RU = [ ( 2 L +  1)(25+ 1 ) ] 1 ' 2  

with the object in curly braces a Wigner 6j-symbol. It turns out to be useful to split 
RLj into an odd and an even part (depending upon whether the indices L, J are odd 
or even), 

One may then prove the relations [6] 

from which it follows that 

P = f( 1 + 2R++)  and Q = f ( l - R + + )  (9) 

are projection operators onto the subspaces corresponding to eigenvalues 1 and -4 of 
R + + .  We note for later use that 

2 2 (2L+1)' /2  Q - -Sro+-  
1 2 (2L+1)' /2  

L 0 - 3  3 2q+1 
P --a'()-- 
L0-3 3 2 q + l  

t In addition to the pair-interaction V we shall include a particle-background and background-background 
interaction term - (2q  + 1 ) - ' a , N 2  in our Hamiltonian. 
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The set of two-fermion operators obeys a Lie-algebra, derived in [ 6 ]  

where e L = [ l - ( - )  2 q + L ] ,  and f L J K  =[(2L+ 1)(2J+ 1)(2K + 1 ) ] 1 ' 2 { t  5 t}. This is just a 
particular way of writing the so(4q + 2) algebra of bilinears in the a, and aL-as seen 
from the point of view of the rotation group. There are a lot of subalgebras in the set 
( l l ) ,  but we are only interested in those which behave simply under rotations. Apart 
from the angular momentum algebra itself, generated by 

2 

G-1 
there is only one such obvious choice. This is the su(2) algebra generated by A,,= A, 
Aio= At ,  and Coo = N / m .  This algebra exists whenever q is half-integer. We 
define the quasispin generators 

1, = fm At = 1 ( U T  

I- = f- A = C ( - ) 4 - m ~ - m ~ m  
m 

m 

I 2 ="-' 2 4 ( 2 q + 1 ) = t C [ a i , a m - f I  

[I, ,  I * ]  = *I* [ I , ,  I-] = 21,. (13) 

m 

which obey the properly normalized su(2) algebra, 

Since all these generators commute with the angular momentum operators J, but not 
with the particle number operator N, this algebra can be used to construct states of 
definite angular momentum at large particle numbers from states with the same angular 
momentum at a lower particle number. Such states will belong to the same quasispin 
multiplet. Since it is in general rather difficult to directly construct states of definite 
angular momentum at large particle numbers, this may prove useful. In order to 
construct the matrix elements of the Hamiltonian between the states at higher particle 
numbers, the transformation properties of the Hamiltonian under quasispin is needed. 
This we analyse in the next section. 

3. Quasispin classification of operators and Hamiltonians 

In this section we classify the different operators in the model into quasispin multiplets, 
and show how the Hamiltonian can be split into terms with definite transformation 
properties under quasispin. 
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We start with the fermion creation and annihilation operators a : ,  a n ,  since these 
are the basic building blocks for all the operators. It is straightforward to compute the 
following commutators 

[Iz, akl=zam I t  

[ I + ,  ai,] = o  [ I + ,  (-)q-"u-,] = ai, (14) 
[ I - ,  ai,] = (-)q-"a-, 

[Iz, (-)q-"a-,] = -;(-)"-"a-, 

[ I - ,  (-)q-"a-,] = 0 

which show that the pair 

transforms as a quasispin-; multiplet. Using the standard Clebsch-Gordan machinery 
it is now simple to construct two-fermion multiplets of definite quasispin. These will 
either be quasispin triplets or singlets. The triplets are constructed as 

X ( Y )  mn = <; f a p 11 y)x',"'xjp' 

L M -  c ( 9 q m n I L W X ' , ? !  

4 

which when coupled to operators of definite angular momentum, 
X ( Y )  - 

mn 

become 
A Z M  

x L M  = -JZ cLM + sLOSMO ( -( - 1 
when L is even, and zero otherwise. The singlets are constructed as 

z,, = (f f a -a 10 O)X',"'Xl;"' 
cl 

which when coupled to operators of definite angular momentum become 

when L is odd 
when L =  M = O  
otherwise. 

One may also verify directly from the commutator algebra (11) that XLM and Z,, 
have the correct transformation properties. We also note that the L = 0 quasispin triplet 
is essentially the set of quasispin generators itself, 

We may now continue in the same manner to couple the multiplets (16) and (17) 
to angular momentum singlets of definite quasispin. These may either be singlets or 
tensors. With appropriate normalization the singlets can be chosen as 

s - -  L-m x [ 4Z2/(2q+l) 
Z M  [ ( - ) ' ~ L M ~ L , - M  + ~ ( A Z M A L M  + ALMAZMM)I 

Z M  ( - ) ' C L M C L , - M  for L odd 

for even L f O  
for L=O 

(18) 
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where Z is the vector of quasispin generators. This can be written in normal ordered 
form, using 

C ( - ) ’ c L M C L , - M  
M 

2L+ 1 
= ALMALM - 2 -  N + ( 2 L +  1 )  

M 2q+ 1 

= A ; ~ A ~ ~  -4- 
M 2q+ 1 

2L+ 1 

This gives 

VL - WL - 3 Q L o I ~  - 2 ( 2 q  + 1 )PLO for L even 

Z,+f(2L+ 1)’’’ for L odd ( 2 0 )  (2L+ 1 ) ” 2  

s L = {  V L + 2  2 q + l  

where Pro, QLO are the matrix elements of (IO). With appropriate normalizations the 
zeroth components of the tensor operators can be chosen ast  

when L f 0, and 

T: = -4[Z2 - 3 I I ] / ( 2 q  + 1 ). 

r: = 2 v, + w, - 1 2 P L 0 1 ,  - ;PLO( 2 q  + 1). 

These two expressions may be combined into one, 

(21) 

By combining these equations we may split the different contributions to the Hamil- 
tonian into quasispin scalar, vector and tensor parts: 

If( SL + TO,) + (@LO + QLO)  I ,  + %2 4 + 1 1 PLO for L even 

I,  -4(2L+ 1 ) ” *  
(2L+ 1)”2 

2 q + l  
VL.= isL - 2 

and similarly, 

WL = -$SL +:e+ (4PL0 - 2QL0)Iz. 

( 2 2 )  for L odd 

t Recall that the tensor operators only exist when L is even. 
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Using the relations ( 5 )  to write ( VL - WL) = -2 ,  [l  - R + + ] L J ~ J  = -; C J  QLJWJ, and 
(2VL+ WL)=2,  [1+2R+,],,WJ =3ZJPLJWJ,  where P and Q are the projection 
operators of (9), we may decompose WL as follows 

WL = [ t(2q + 1 1 PLO + 2 QLJ, + QLJ WJ] 
J 

+ - ~ ( ~ ~ + ~ ) P L o - ~ P L o I , + C  PLJWJ + [ ( ~ P L o - ~ Q L ~ ) I : I  (24) [ J 1 
where the terms enclosed in brackets are respectively the scalar, tensor and vector 
parts of W,. Thus, given an interaction characterized by a set of potential coefficients 
P L ,  we may split these as PL = P i s ) +  PiT1, where 

Pi”’ =,I QLJPJ P L  -CPLJPJ 

P ’ = $ ( 2 q +  1 ) / 3 ~ ” + 2 p ~ s ’ z , + ~  PiS’WL 

(25) ( r )  - 
J 

and write the pair-interaction as V = V”’+ V‘r’ + V“’, with 

L 

v‘ n = -j( 2q + 1 )pi‘’ - 4p&”z, + p “’ w, (26) 
L 

v‘v’= (4pbT’-2pp)I, .  
Assume now that we have calculated the matrix elements of these operators between 
states of some low particle number N (i.e. with some low I ,  = I : ) ,  some definite total 
quasispins I, 1’, and some other quantum numbers a, P. By the Wigner-Eckart theorem 
for the matrix elements of sp in- l  tensor operators T“, 

these matrix elements are related to the matrix elements at other particle numbers (i.e. 
a general quasispin I z ) .  The scalar part is independent of I , ,  and non-zero only when 
I = 1’. The tensor part varies as 

(27) 
where f(I, 1’; I , ,  1:) =f(Z’, I ;  I,, 1:) = ( I I z  2 011’ I , ) / j Z I :  2 011’ I:). Explicitly: 

(ZI& a l T L J I ’  I:; @ ) = ( I ;  +-L/II‘; p ) ( I I , l M ~ z ’ z : )  

(ZI,; alv(T)lI’I : ;  P ) = f ( I ,  1’; I,, I : ) ( I I : ;  alV(T’1z’I:; p )  

1 
(I + I?+ 1)( z -I?+ 1)1:5 1 

3 1 ;  - Z(I+ 1) 

( I  + I, + 1 )(I - I, + 1 ) z: f(I, I+  1; I , ,  1:) = 

( I  + I, + 1 )(I + I: + 2) ( I - I: + 1 ) ( I  - z: + 2 
( I+ zg+ 1)(Z + 1:+2)(1- I:+ 1 ) ( Z  - 1:+2) 

1’2 1 .  [ f(Z, 1 + 2 ;  I , ,  I : ) =  

In the construction process we have in mind it would be natural first to construct the 
matrix elements of (26) at the endpoint of the lowest possible quasispin, Z: = -Z, and 
then use (27) to obtain the remaining matrix elements. In the large q limit the factors 
(28) then behave like 

f(I, I; I = ,  -1)-(3z2-1)/2 
f( I, I + 1 ; z,, -I) - [ z2( 1 - z2)]l’2l 
f (Z , I+2;  12, - Z ) - [ ( 1 - z 2 ) / J 8 ] Z  

where z = ZJZ. Thus, the coupling between multiplets of different quasispin will be 
strongly enhanced away from the endpoints. 
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4. Eigenstates of total quasispin Z2 

The total set of J = 0 states can be classified into multiplets of definite quasi-spin I, 
as indicated schematically in figure 1 .  To apply the Wigner-Eckart theorem to our 
problem we must construct a basis of states in which I’ is diagonal. The simplest 
multiplet to construct is the one to which the zero particle state 10) belongs. This is 
the multiplet which (for a given q) has the largest possible quasispin, I = Imax= 
(2q + 1)/4. The normalized states in this multiplet are 

describing a state with N = 2(Imax + I,) particles. To calculate the matrix elements of 
the pair interaction in this state, we first evaluate them in the zero particle state, 
Iz = - I m a x  , 

V ! f ) ( - I m a x )  5 ( I m a x  -1maxI V(S) lZmax  -1max) = 2(pbT) - P b s ’ ) I m a x  

V!?(-Imax) 5 ( I m a x  -Imaxl  V(’)IImax -1max) = 2 ~ b ” ~ m a x .  
(31) 

Use of the Wigner-Eckart theorem through (27) and (28) now gives 

V \ f ) ( ~ z )  = V \ S ) ( - I m a x )  
(32) 

pb“. 3 II - Imax(  Imax  + 1 
v $ T ) ( ~ z )  = ( I m a x  ~ z l  v ‘ ” l I m a x  ~ z )  = 2 

( 2 I m a x  - 1) 

I 

; .... + I  

N 

0 1 . . . .  1,-2 1, 

I 

Figure 1. Schematic view of the location of states in the I -Iz plane. I ,  is the maximum 
quasispin value (29 + 1)/4. For N = 4 we include all the possible states, whereas for higher 
N, we only diagonalize within the subset of states in the broken frame. (Note that there 
are no I = 0 states with quasispin I = I ,  - 1.) 



Fractional quantum Hall effect 487 1 

Adding terms we find 

where Y = N / ( 2 q  + 1 )  = (Zmax+ Zz)/2Zmax is the filling factor. It is instructive to compare 
this result with the result of making a Bogoliubov transformation to a state Iv) such 
that ( v l N I v ) = ( 2 q + l ) v ,  i.e. (Z2)=(2v- l )Zmax.  This may be achieved by introducing 
new fermion operators 

t 

( 

and defining 1.) to be the state which is annihilated by all the b,. By normal ordering 
all expressions with respect to the bn,  b: it is straightforward to compute matrix 
elements in the state Iv). It is simpler, however, to make use of the fact that the 
Bogoliubov transformation above is simply a rotation in quasispin space around the 
y axis, 

(bt , ,  b n ) =  ~ ( ~ p ) ( a i , ,  an)U(p) '  I 4  = U(Cp)lO) (34) 

( ~ ( Z , ~ ~ ) = ( O I U ( C ~ ) + Z , U ( C ~ ) ~ O ) = ( O ~  cos qc2+s in  C~Z,~O)= -cos cpImax 

where U ( p )  = exp(iCp1y) = exp(-Cp(1,- 1-) /2) .  This will rotate Z, in the xz plane, 

which means that we must choose cos cp = 1 - 2 v. V"' is invariant under this transforma- 
tion, being a scalar. Since V"" is the M = 0 member of a multiplet T$ we get 

( V I  Til y )  = (01 U ( d  Ti U(Cp)lO) = c DL%(Cp)(Ol Thio) 
M 

= d g (  Cp)(O/ TEJO) = (3 cos2 cp - l)ppZmax. 

Here we have used the fact that of the T L  only T i  have a non-zero expectation value 
in the zero particle state. Adding all contributions we obtain 

(35) ( V I  VI V) = -( 2q + 1 )[ V( pis' + p i T ' )  - 3 v2/3bT)] 

which becomes identical to (33) as q + a. 
As an explicit example we take the pair potential to be the standard choice of a 

3~ Coulomb interaction, V( r )  = e2 /47r~r ,  with r = 2 1 , G  sin 8 / 2  the chord distance 
(and 6 the spherical angle) between a pair. Measuring energy in units of e 2 / 4 m l B ,  
the corresponding potential coefficients are [6] 

where 

4 q + 1  
A(q)  = (2q + 1)[ 2 4 (  2q ) ] - I .  
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Using properties of the matrix RLj we find 

Here the sums over L are restricted to even L? and the sum over J is restricted to odd 
J. We have further used the sum formula (for 2q odd) 

where the sum is restricted to n zf, and 2q is assumed odd. Inserting the coefficients 
(37)  into (33), and including a particle-background and background-background 
interaction term - ( 2 q  + 1 ) * v 2 / 4 ,  we obtain an energy per particle 

This reproduces the previously found exact results for a completely filled Landau level 
( v  = 1) and a two-particle state ( v  = v 2 =  2/(2q + 1)) [6], which is no surprise since the 
I = I,,,-state is the only J = 0-state in these cases. In fact, equation (38) is simply a 
linear interpolation between these two cases, 

& ( ~ ) = [ & ( V z ) ( l - - y ) + & ( ~ ) ( ~ - - 2 ) 1 / ( 1 - - 2 )  (39) 

and this form is valid for general interaction potentials. As q +CO, with the interaction 
potential (36), we obtain 

&(v)z-[&v+u 4 4  +. . .] 
as compared with 

&(+[ &v-G+. l - v  . . 1 
while averaging the Hamiltonian in the Bogoliubov states (34) .  These expressions also 
serve as upper variational estimates, with (40) being the most accurate, as can be 
expected on general grounds. The q-dependence of these expressions is shown in figure 
2 for v = 4, together with the results obtained when including the states of the next 
highest quasispin. The finite-size corrections are rather large, since they decay only 
like l/G. In contrast, the finite-size corrections of the semi-classical estimates in [9] 
decayed like 1 /  q. As q + 0;: the numerical values for these energies become rather poor 
compared with other estimates for the ground-state energy. This indicates that the 
weak point of the method will be to build in sufficiently good multiparticle correlations 
into the wavefunction. Since the state we have constructed is quite analogous to the 
pair-condensed state of the BCS theory of superconductivity, one suspects that a simiiar 
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Figure 2. The finite-size behaviour of the energy per particle, & ( U )  as a function of l/&, 
plotted at a filling factor U -  N / ( 2 q +  1)  = f .  The plotted energies are computed from: ( a )  
the Bogoliubov states (34), ( b )  the I,,, quasispin states (30) and ( c )  the states constructed 
from quasispin I =(I,,,, l m a x - 2 ) .  The asymptotic forms (41) and (40) are also indicated. 
This behaviour is not qualitatively different at other values of U. 

difficulty may arise in that case also (in systems where there are strong short range 
repulsive forces between the fermions). 

We now turn to the four-particle states. In [ 6 ]  we constructed an orthonormal basis 
of J = 0 states as 

where (when q is half-integer) {x: 1 a = 1,2, . . . , D = [fq + 41) is a complete orthonormal 
set of eigenvalue 1 eigenvectors for R + + .  We also found the matrix elements of W, 
between such states. For L even they are 

-(a1 W&I) = -12Xy'xy'. (43) 

We used a definite algorithm for generating the eigenvectors x:"' from the matrix 
elements of the projection operator P = f( 1 +2R,+). To construct states of definite 
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quasispin this algorithm has to be slightly modified. In equation (30) (with I ,  = -Imax+ 
2), we have constructed a four-particle state with total quasispin Z = I,,, . This corre- 
sponds to a choice 

with c = (l/Poo)1’2 = [3(2q+ 1)/(2q - 1)]1/2.  A comparison of equations (42) and (44) 
with (30) does not immediately reveal that they are equivalent. However, to the vector 
x(L1) we may freely add any eigenvalue -4 eigenvector of R,, , e.g. ( p L  = cQLo (because 
such vectors do not lead to the creation of new states, as can be seen from the calculation 
of matrix elements in [6]). Thus, as an alternative to equation (44) we may equivalently 
make the replacement 

x ( L 1 i + x ( : ) ’ =  ( 1 )  X L  + Q L = C ~ L O  

in (42). With this choice it is easy to see that equation (30), with I ,  = -Ima,+2, is 
equivalent to (42). 

To proceed we construct a new projection operator 

if LJZO 
4 [(2L+1)(2J+1)]1/2 

FL, = i..J - 3  (2q - 1)(2q+ 1 )  
l o  if LJ=O 

and decompose this as Pu = 2:=2 ,y:“’x:”’, by the same algorithm as in [6]. The states 
with a = 2 , .  . . , D, become orthogonal to ITl), and thus are eigenstates of total 

quasispin with I = Z2 = I,,, - 2. Using (43) we can construct the matrix elements 

V$3’(-12)=(12 - 1 2 ;  a l v ( y 1 2  - I 2 ;  p ) =  V:s,’(I,) 

V‘,:’( - 1 2 )  = vi:’( - I 2 )  = ( I 2  - 12; a1 V(T’/Imax - z2; 1)  

where the sums are restricted to L even, and a, p = 2 , .  . . , D. In addition we have 
already found -I2) in equation (32). By multiplication with the appropriate 
factors from (28) we can find the matrices V!$T’(Z,) for a, p = 1 , .  . . , D. Adding terms 
(and including the diagonal background term) we may easily construct the complete 
Hamiltonian matrix-as projected onto the states of total quasispin I,,, and I,,, - 2, 
for all particle numbers N.  The explicit construction of this matrix, and the solution 
of the resulting eigenvalue problem must be done numerically. Illustrative results of 
this computation, for the Coulomb potential (36), are included in figure 2. 

This construction will not in general lead to exact eigenstates and eigenvalues when 
N > 4 ,  because as N increases new states of lower total quasispin I are introduced, 
and these will couple to the states constructed here via V‘T’. However, if the interaction 
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potential is such that the tensor part vanishes, p i T )  = 0, we do get exact eigenstates 
and eigenvalues (but not necessarily those corresponding to the ground state for the 
system). Which interaction potentials will lead to a vanishing tensor part? The simplest 
class to describe is the one given by pair-potentials V(cos 6) which satisfy the symmetry 
relation 

V(c0s 6) = - V(cos( 77 - 6)). (46) 

This class does not include the commonly used Coulomb interaction, which as we 
have seen also contains a tensor interaction part. However, in the thermodynamic limit 
it should not lead to a significant change of the dynamic behaviour if we modify the 
interaction between particles lying on opposite hemispheres in such a way that the 
symmetry (46) is enforced. This is so because the interaction between a given particle 
and an essentially homogeneous distribution of particles at a large distance will be 
cancelled against the interaction with the uniform background in the same region. 

There is also one particular model for which the spectrum can be found exactly. 
This is the one described by potential coefficients p L  = KSLo, leading to an interaction 
(apart from possible background terms proportional to N and N 2 )  

V =  KZ'Z- = K [ 1 2 +  Z, - Z:]. (47) 

We note that if the constant K is positive then the state of lowest energy will be the 
one of lowest possible quasispin Z, while if K is negative it will be the one of highest 
possible quasispin. Only in models which lie closer to the latter case can we expect 
the Wigner-Eckart method discussed in this paper to be really successful. 

Acknowledgments 

We acknowledge support by the Royal Norwegian Council for Scientific and Industrial 
Research (NTNF) and partial support for R Sollie by the US Department of Energy 
under the grant DE-FG02-87ER45333. We would also like to thank the Department 
of Mathematics, MIT, for the hospitality during parts of this work. 

References 

[ l ]  Tsui D C, Stormer H L and Gossard A C 1982 Phys. Ret.. Lett. 48 1559 
Prange R E and Girvin S M (eds) 1987 The Quantum Hall Effect (New York: Springer) 
Chakrabony T and Pietilainen P 1988 The Fractional Quantum Hall Effect (New York: Springer) 

[2] Haldane F D M 1983 Phys. Ret.. Lert. 51 605 
[3] Olaussen K and Sollie R 1990 J. Phys. A: Math. Gen. 23 171 
[4] Sollie R 1989 PhD thesis University of Trondheim-NTH 
[ 5 ]  Fano G and Ortolani F 1988 Phys. Rev B 37 8179 
[6] Sollie R and Olcussen K 1990 J. Phys. A: Math. Gen. 23 185 
[7] Judd B R 1970 Topics in Atomic and Nuclear Theory eds Judd B R and Elliott J P, University of 

Canterbury, New Zealand 
[8] Wu T T and Yang C N 1976 Nucl. Phys. B 107 365 
[9] Sollie R 1989 Rev. Bras. Fis. 19 424 


